DO NOW:

On your graphing calculator, graph, then sketch:
$\mathrm{x}(\mathrm{t})=\mathrm{t}-\sin \mathrm{t}$
$y(t)=2-2 \cos t$
for $0 \leq t \leq 10$

Use ZOOMFIT in ZOOM menu to have the calculator find the X and Y windows
Use CALC and TRACE to explore what you can find out about the curve using the calculator

Use CALC and TRACE to explore

$$
\begin{aligned}
& x(t)=2 \cos t+2 \cos 4 t \\
& y(t)=\sin t+\sin 4 t
\end{aligned} \quad 0 \leq T \leq 2 \pi
$$

In general, we will think of parametric equations as describing the motion (position) of a particle, with the variable t representing time

$$
\langle x(t), y(t)\rangle
$$

Some books, particularly the one that I copied problems, from will use physics style notation for position, we will use \vec{i} to represent a unit vector in the x-direction and \vec{j} to represent a unit vector in the y-direction, ie:

$$
\begin{array}{ll}
\begin{array}{l}
\vec{i} \\
=(1,0)=\hat{l} \\
\vec{j}=(0,1)
\end{array} & \stackrel{\rightharpoonup}{i} \\
& \begin{array}{l}
x(\pi)=2 \\
y(\pi)=-3
\end{array}
\end{array}
$$

The position of a particle at time t is given by:
$\mathrm{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \overrightarrow{\boldsymbol{i}}+\mathrm{y}(\mathrm{t}) \vec{j} \quad \mathrm{r}(\mathrm{t})=2(1,0)-3(0,1)=(2,0)-(0,3)=(2,3)$

There are three main terms that we need to know when we think about a particle whose motion is described parametrically:

VELOCITY ACCELERATION
Remember, velocity and acceleration are vectors $\langle 2,-3\rangle$
Speed is a scalar = magnitude of velocity $\quad 2(1,0)-3(0,1)=$
To calculate velocity and acceleration, we differentiate -3\rangle
term by term, that is
if

$$
r(t)=x(t) \vec{i}+y(t) \vec{j}
$$

then

$$
\langle x(t), y(t)\rangle
$$

$$
\begin{aligned}
& v(t)=\frac{d x}{d t} \vec{i}+\frac{d y}{d t} \vec{j} \quad\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle \\
& \text { and } \\
& a(t)\left.=\frac{d^{2} x}{d t^{2}} \vec{i}+\frac{d^{2} y}{d t^{2}} \vec{j}<\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}\right\rangle
\end{aligned}
$$

Since speed is the magnitude of velocity, we calculate it by taking the square root of the sum of the squares of the components of the velocity:

Let's work an example together:
\#24 from Varberg-Purcell page 653

$$
r(t)=\left(3 t^{2}-1\right) \vec{i}+t \vec{j}
$$

Find $v(t)$ and $a(t)$ and the speed.

$$
\begin{aligned}
& V(t)=6 t \hat{i}+\hat{j} \\
& a(t)=6 \hat{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Speed }=\sqrt{(6 t)^{2}, t_{1}^{2}}=\sqrt{36 t^{2}+1} \\
& \text { Evaluate these at } t=1 / 2 .
\end{aligned}
$$

$$
\begin{aligned}
& V\left(\frac{1}{2}\right)=3 \hat{i}+\hat{j} \quad \operatorname{speed}\left(\frac{1}{2}\right)=\sqrt{10} \\
& a\left(\frac{1}{2}\right)=6 \hat{i}
\end{aligned}
$$

Practice Problems: Packet, page 3, \#23-33 (odd)

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{3 \ln \left(\cos t^{2}\right)}{\arctan \left(\frac{1}{t}\right)} \\
& \frac{d u}{d t}=\frac{5 \sec \left(\frac{1}{t^{2}}\right)}{t^{4}+3} \\
& \text { What is the acceleration vector at } \\
& t=3 ? \\
& \text { Use NDERIV! }
\end{aligned}
$$

