Which of the following is the solution to the differential equation $\frac{dy}{dx} = \frac{x}{y}$, where y(-2) = -1? 28.

(A)
$$y = \sqrt{x^2 - 3}$$
 for $-\sqrt{3} < x < \sqrt{3}$

(B)
$$y = -\sqrt{x^2 - 3}$$
 for $x > \sqrt{3}$

(C)
$$y = \sqrt{x^2 - 3}$$
 for $x > \sqrt{3}$

(B)
$$y = -\sqrt{x^2 - 3}$$
 for $x > \sqrt{3}$
(C) $y = \sqrt{x^2 - 3}$ for $x > \sqrt{3}$
(D) $y = \sqrt{x^2 - 3}$ for $x < -\sqrt{3}$

(E)
$$y = -\sqrt{x^2 - 3}$$
 for $x < -\sqrt{3}$

27. A solution of the equation $\frac{dy}{dx} + 2xy = 0$ that contains the point (0, e) is

(A)
$$y = e^{1-x^2}$$

(B)
$$y = e^{1+x^2}$$

(C)
$$y = e^{1-x}$$

(D)
$$y = e^{1+x}$$

(E)
$$y = e^{x^2}$$

Which of the following is the solution to the differential equation $\frac{dy}{dx} = y^2$, where 12. y(-1) = 1?

(A)
$$y = \frac{1}{x}$$
 for $x \neq 0$

(B)
$$y = -\frac{1}{x}$$
 for $x < 0$

(C)
$$y = -\frac{1}{x}$$
 for $x > 0$

(D)
$$y = \frac{1}{x}$$
 for $x > 0$

(E)
$$y = \frac{1}{x}$$
 for $x < 0$

21. If $\frac{dy}{dx} = -10y$ and if y = 50 when x = 0, then y =

- (A) $50e^{x}$
- (B) $50e^{10x}$
- (C) $50e^{-10x}$
- (D) 50-10x
- (E) $50-5x^2$

10. If $\frac{dy}{dx} = \frac{x \sin(x^2)}{y}$, then y could be

- (A) $\sqrt{2 \cos(x^2)}$
- (B) $\sqrt{2} \cos(x^2)$
- (C) $2 \cos(x^2)$
- (D) $\cos(x^2)$
- (E) $\sqrt{2-\cos x}$

23. If g'(x) = 2g(x) and g(-1) = 1, then g(x) =

- (A) e^{2x}
- (B) e^{-x}
- (C) e^{x+1}
- (D) e^{2x+2}
- (E) e^{2x-2}