Euler's Method March 31, 2017 Euler's Method March 31, 2017

HW: Page 640 #1, 3, 6, 11 (Euler's method)

DO NOW:

Questions from HW?

- 1) Copy the diff eq for yesterday's lab onto your sheet.
- 2) In your group, do problem #11 (slope field matching) on page 5 of your Diff Eq packet.

If dy/dt=y(t-5) and y(1)=2; find the equation of the tangent to the graph of y(t) at t=1. Use the tangent line to approximate y(1.1).

$$\frac{dy}{dt}\Big|_{(1,2)} = 2(1-5) = -8$$

$$4^{1}(t) = 2 + -8(t-1)$$

$$5^{1}(1) = 2 + -8(1.1-1)$$

$$= 1.2$$

$$5^{2}(1-5) = -8$$

38

39

We will look at Euler's (oiler's) method today. Euler's method takes the idea of "following the tangents" and makes it numerical.

We will work with the diff eq dy/dt=y(t-5) and y(1)=2 and look at the interval [1,2] Let's figure out how to fill in this table.

$$\frac{n}{0} + \frac{1}{2}$$

$$\frac{1}{1 \cdot 1} = 1.2$$

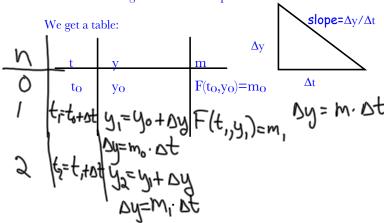
$$\frac{1}{2} = 2(1-5) = 8 = m_0$$

$$\frac{1}{2} = 1.2(1-5) = 1.2$$

How do we do Euler's Method by hand?

Given
$$y'=F(t,y)$$
 and $y(t_0)=y_0$

Let Δt be the length of the time step



40

http://tube.geogebra.org/student/m144927

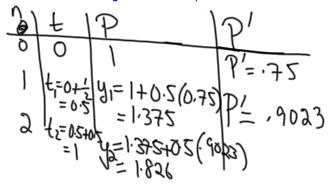
Problem #6 from yesterday's lab is logistic growth; the general form is

$$P'=kP(C-P)$$

P'=kP(C-P)In problem #6, k =623and C= +

Let's start at (0, 1) and do two steps by hand with $\Delta t=0.5$, this will approximate P(1)

We can then see what we get on the computer if we decrease Δt



DIDN'T DO IN CLASS TODAY!!

What are the properties of logistic growth?

a) What is the limit as $t \rightarrow \infty$? Does it matter whether we start below or above carrying capacity?

b) When is the population growing mast rapidly 2 (When is the maximum for P'?)

Let's look at a graph of P vs. IP!

