What is a slope field?

A slope field or direction field for the first order differential equation:

$$
\frac{d y}{d x}=f(x, y)
$$

is a plot of short line segments with slopes $f(x, y)$ for a lattice of points in the (x, y) plane.

In other words... a slope field shows you pieces of tangents to a curve at any given point in the coordinate plane. A slope field is a road map of the derivative which gives you directions for how to sketch your antiderivative. It is a sketch of the differential equation before you solve. When you sketch the slope field it gives you a visual of the family of antiderivatives. Slope fields are particularly useful for solving differential equations for which we cannot separate variables in order to integrate.

Goals of this Clinic:

1) For you to be able to sketch your own slope field by hand
2) For you to be able to match a slope field with a given differential equation
3) For you to be able to use a slope field and initial condition to sketch a specific solution to an initial value problem.

By the end of class today, you want to feel as though you have reached Goals 1 and 2 of the Slope Field Clinic. After our next class we will have reached Goal 3.

1) Sketch the slope field by hand for the following differential equation:

$$
\frac{d y}{d x}=x-y
$$

2) Make a table:

(x, y)	Work	$\frac{d y}{d x}$
$(0,0)$	$0-0$	0
$(1,0)$	$1-0$	1
$(2,0)$	$2-0$	2
$(3,0)$	$3-0$	3
$(-1,0)$	$-1-0$	-1
$(-2,0)$	$-2-0$	-2
$(-3,0)$	$-3-0$	-3

This $3^{\text {rd }}$ column represents the slope of the tangent lines at the ordered pairs from the $1^{\text {st }}$ column.

You do not need to do these calculations for EVERY ordered pair. Look for patterns. For Example, look at the values of x and y which will make $\frac{d y}{d x}$ zero. In this case, whenever $x=y, \frac{d y}{d x}=0$. What does this mean? It means that the tangents will be horizontal along the line $y=x$.
3) The graph below shows the start of the sketch for the slope field for $\frac{d y}{d x}=x-y$ based on the information discussed above. Finish sketching this slope field.

2. Match the slope field with its differential equation. Explain the reasons for your choices.
a. $y^{\prime}=y-2$
b. $y^{\prime}=x-y$
c. $y^{\prime}=x^{2}-y^{2}$
d. $y^{\prime}=x^{3}-y^{3}$

A	.	
	, i , , , , 4	, 1, 1, ,
	', ', ', '	, !
	$\cdots \cdots \cdots$, . \quad,
	- 2	- - - -
	- ${ }^{\text {, , , }}$	
	, 1 , , 「	- , , , ,
	-i	2
	11111	
	, 兑1,	1111111
	11.111018	1
	$1 \begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	$1 \begin{array}{llll}1 & 1 & 1\end{array}$
	1111111111	1111111
	11111111	1111
	11119111^{-4}	111111

B.
 C.
D.

Match the slope fielas winl
(A)

(B)

(D)

7. $\frac{d y}{d x}=\sin x$
8. $\frac{d y}{d x}=x-y$
9. $\frac{d y}{d x}=2-y$
10. $\frac{d y}{d x}=x$

Match the slope fields with their differential equations.
(A)

(B)

(C)

(D)

11. $\frac{d y}{d x}=.5 x-1$
12. $\frac{d y}{d x}=.5 y$
13. $\frac{d y}{d x}=-\frac{x}{y}$
14. $\frac{d y}{d x}=x+y$
15. (From the AP Calculus Course Description)

The slope field from a certain differential equation is shown above. Which of the following could be a specific solution to that differential equation?
(A) $y=x^{2}$
(B) $y=e^{x}$
(C) $y=e^{-x}$
(D) $y=\cos x$
(E) $y=\ln x$

1. Match the slope fielos with their differential equadons.
(a) $y^{\prime}=y$
(b) $y^{\prime}=-y$
(c) $y^{\prime}=1+y^{2}$
(d) $y^{\prime}=1 / y$
(e) $y^{\prime}=1 /\left(1+y^{2}\right)$
A.
B.

D.

Match the slope fields with their differential equations.
(A)

(C)

15. $\frac{d y}{d x}=\frac{1}{2} x+1$
16. $\frac{d y}{d x}=y$
(B)

(D)

17. $\frac{d y}{d x}=x-y$
18. $\frac{d y}{d x}=-\frac{x}{y}$
19. The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x y$ is shown in the figure below. The solution curve passing through the point $(0,1)$ is also shown.
(a) Sketch the solution curve through the point $(0,2)$.
(b) Sketch the solution curve through the point $(0,-1)$.

20. The calculator drawn slope field for the differential equation $\frac{d y}{d x}=x+y$ is shown in the figure below.
(a) Sketch the solution curve through the point $(0,1)$.
(b) Sketch the solution curve tbrough the point $(-3,0)$.

Permission to use granted by Nancy Stephenson Available at apcentral.collegeboard.com.

