L'Hopital's Rule

Feb 7, 2017

L'Hopital's Rule

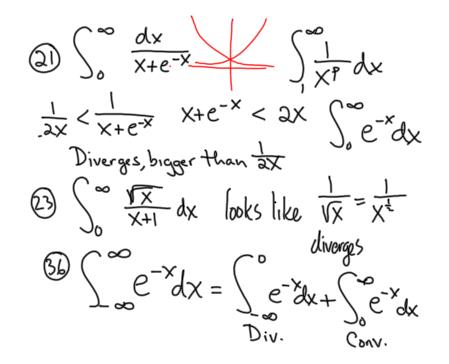
Feb 7, 2017

HW: Page 549 #3 - 39 (odd)

Use a table on the calculator to "guess" each of the following limits:



In my experience, what we need is a calm mind and warm-heartedness provides a basis for that. That's how we make ourselves happy as individuals in families, local communities and nations. I believe that if we can train those who are young today in these qualities the world will be a more peaceful place later in this century.



One more detail from Improper Integrals:

12-4+8-16+...

What if f(x) is not always positive? We look at |f(x)| and see what happens. If the improper integral converges for |f(x)|, it will converge for f(x), which will be less.

Theorem on Absolute Convergence:

- Let f and g be continuous functions such that for all $x \ge a$, $0 \le |f(x)| \le g(x)$
- If $\int_{a}^{\infty} g(x) dx$ converges, then $\int_{a}^{\infty} f(x) dx$ also converges

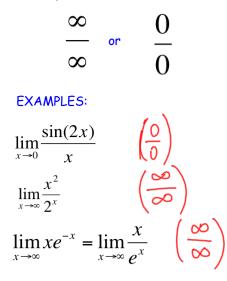
and
$$\left|\int_{a}^{\infty} f(x)dx\right| < \int_{a}^{\infty} g(x)dx$$

[Xample $\int_{0}^{\infty} \frac{SINX}{X^{2}} dX$ Compare
 $\int_{0}^{\infty} \frac{1}{X^{2}} dX$
 $\int_{0}^{\infty} \frac{1}{X^{2}} dX$
 $SINCete[SIWX] \leq 1$

L'Hopital's Rule (for some limits involving ∞)

This rule will help us figure out limits when both terms in a quotient are getting big or small, which term "gets there faster"

This rule only works for indeterminate limits that look like either



This looks like a product, but we can rewrite it as a quotient

L'Hopital's Rule

L'Hopital's Rule

EXAMPLES:

Feb 7, 2017

L'Hopital's Rule Let f and g be differentiable and suppose as
$$x \rightarrow a$$
, either:

1) $f(x) \rightarrow 0$ AND $g(x) \rightarrow 0$ OR 2) $f(x) \rightarrow \pm \infty$ AND $g(x) \rightarrow \pm \infty$ AND $\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$ exists THEN: $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$

NOTE: Take the derivatives separately. REMEMBER THE QUOTIENT RULE IS DIFFERENT! $\lim_{x\to 0}\frac{\sin(2x)}{r}$ 2 (05(2X) 11m (-70 $\lim_{x \to \infty} \frac{x^2}{2^x} \stackrel{\bigcirc}{=} \lim_{x \to \infty} \frac{2x}{(\ln 2) 2^x} \stackrel{\bigcirc}{=}$ |1m X-Э∞ لاهر $\lim_{x \to \infty} x e^{-x} = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{x}{e^x}$ 7-00 $\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} x \ln x = \lim_{x$ Inx ' 눗 \mathfrak{o} Im X70 = 1m =1= ()

Feb 7, 2017

HW: Page 549 #3 - 39 (odd)

So, the rate at which the functions go to infinity, from

slowest → fastest logarithmic → polynomials → exponential

Which of these integrals are improper?
a)
$$\int_{0}^{1} \frac{SINX}{X} dX NOT$$
 Which integrands have a
b) $\int_{0}^{1} \frac{\cos x}{X} dX = 1$ Which integrands have a
b) $\int_{0}^{1} \frac{\cos x}{X} dX = 1$ which integrands have a
time to the limit at zero?
c) $\int_{0}^{1} \frac{\cos x}{X} dX = 1$ $\lim_{X \to 0^{+}} \frac{\cos x}{X} = 0$
c) $\int_{0}^{1} \frac{x h x dx}{X} \frac{1}{X} \frac{1}{200} x \ln X = 0$
d) $\int_{0}^{1} \frac{\operatorname{arctan} x}{1} dx + \frac{1}{100} \frac{1}{10$