

When and how do we "split" integrals?

$$
\int_{1}^{\infty} \frac{d x}{x^{2}}=1 \int_{0}^{1} \frac{d x}{x^{2}} \text { diverges }
$$

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{(x-2)^{3}(x-3)^{2}} d x \\
& \int_{u=\arctan x d u=\frac{\arctan x}{1+x^{2}} d x=\frac{1}{1+x} d x}^{d x+\operatorname{arctax} x)^{2}}+C
\end{aligned}
$$

Is INFINITY a number?
For any finite number a, what is :

$$
\int_{-a}^{a} x^{3} d x=0
$$

So, what is: $\int_{-\infty}^{\infty} x^{3} d x=\int_{-\infty}^{88} x^{3} d x+\int_{\text {div }}^{\infty} x^{3} d x$
Another Question:
What if we can't find an antiderivative, or it's hard to find, or it's hard to take the limit as the upper limit goes to infinity?
Example: $\quad \int_{1}^{\infty} \frac{1}{x^{5}+1} d x$ Weill ask Wolfram Alpha for

$$
\begin{aligned}
& \int \frac{1}{1+x^{5}} d x= \\
& \frac{1}{20}\left(-(1+\sqrt{5}) \log \left(2 x^{2}+(-1-\sqrt{5}) x+2\right)+(\sqrt{5}-1) \log \left(2 x^{2}+(\sqrt{5}-1) x+2\right)+\right. \\
& \quad 4 \log (x+1)-2 \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{-4 x+\sqrt{5}+1}{\sqrt{10-2 \sqrt{5}}}\right)+ \\
& 2 \sqrt{2(5+\sqrt{5})} \tan ^{-1}\left(\frac{4 x+\sqrt{5}-1}{\sqrt{2(5+\sqrt{5})})}\right)+\text { constant }
\end{aligned}
$$

An Easier Solution: Think back to the idea of area: If "shape1" contains "shape2" then area(shape1)>area(shape2)

On the interval $1 \leq x<\infty, \quad \frac{1}{x^{5}}>\frac{1}{x^{5}+1}$
so if $I_{1}=\int_{1}^{\infty} \frac{1}{x^{5}} d x>\int_{1}^{\infty} \frac{1}{x^{5}+1} d x=I_{2}$

This doesn' \dagger give us a precise value for I_{2} but we know it is some particular value less than $I_{1}=1 / 4$

Comparison Test for Nonnegative Improper Integrals

Let f and g be continuous functions. Suppose for all $x \geq a, 0 \leq f(x) \leq g(x)$

1) If $\int_{a}^{\infty} g(x) d x$ converges, then so does $\int_{a}^{\infty} f(x) d x$
2) If $\int_{a}^{\infty} f(x) d x$ diverges, then so does $\int_{a}^{\infty} g(x) d x$

In order to use this test, we need to guess whether an integral converges or diverges and then find an appropriate function to compare to.

Some functions we can use for comparison:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-x} d x \\
& \int_{1}^{\infty} \frac{1}{x^{p}} d x \text { for } p>1 \quad \text { Converge }
\end{aligned}
$$

http://www.math.uri.edu/~pakula/142sec3f11/limcomp.pdf

The Limit Comparison Test for Improper Integrals
The following test is often, but not always, a useful alternative to the comparison test given on p . 381 of the textbook.

$$
\begin{aligned}
& \text { Limit Comparison Test. If } f(x) \text { and } g(x) \text { are both positive when } x \geq a \\
& \text { and } \\
& \qquad \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L \text { and } 0<L<\infty
\end{aligned}
$$

then the improper integrals

$$
\int_{a}^{\infty} f(x) d x \text { and } \int_{a}^{\infty} g(x) d x
$$

are either both convergent or both divergent.
Example. Is $\int_{2}^{\infty} \frac{1}{\sqrt{x+1}} d x$ convergent? The obvious integral to use for comparison is $\int_{2}^{\infty} \frac{1}{\sqrt{x}} d x$ which we know diverges because $\int_{2}^{\infty} \frac{1}{x^{p}} d x$ diverges when $p<1$. However,

$$
\frac{1}{\sqrt{x+1}} \leq \frac{1}{\sqrt{x}}
$$

so the obvious comparison is not the one we want. (We would want the opposite inequality!) On the other hand, using the Limit Comparison Test we find

$$
\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x+1}}}{\frac{1}{\sqrt{x}}}=\lim _{x \rightarrow \infty} \sqrt{\frac{x}{x+1}}=\sqrt{1}=1 .
$$

Here $L=1$ and $0<1<\infty$ so we conclude that our integral is divergent.

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-x^{2}} d x & =-\frac{1}{2} e_{-1}^{-\infty} e^{u} d u \\
x=-x^{2} d u=-2 x d x & \int_{-1}^{t} e^{u} d u \\
& =-\frac{1}{2} \lim _{t \rightarrow-\infty} \int_{-1}=\frac{1}{2} d u \\
& =-\frac{1}{2} \lim _{t \rightarrow-\infty} e^{t}
\end{aligned}
$$

$$
(15) \quad \begin{aligned}
& \int_{0}^{\infty} \frac{d x}{x^{4}+1}<\int_{0}^{\infty} \\
& \frac{1}{x^{4}+1}<\frac{1}{x^{4}} \int_{0}^{\infty} \frac{1}{x^{4}+1} d x \\
& \\
& \int_{1}^{\infty} \frac{d x}{x^{4}+1}<\int_{1}^{x^{4}} d x=\frac{1}{3}
\end{aligned}
$$

