HW: Packet: Page 4 \#1-4, 7-10

DO NOW:

Find the volume of the following solid:
It lies between planes perpendicular to the x-axis at $x=0$ and $x=\pi$. The cross sections perpendicular to the x-axis on this interval are quarter circles whose radius lies between the curve $y=\sin x$ and the x-axis and whose "center" is on the x-axis.

$$
\begin{aligned}
& \Delta V=\frac{\pi r^{2}}{4} \cdot \Delta x \\
&=\frac{\pi y^{2}}{4} \Delta x \\
&=\frac{\pi\left(\sin \omega^{2} x\right)}{4} \Delta x \\
& V=\frac{\pi}{4} \int_{0}^{\pi} \sin ^{2} x d x \\
&=1.234
\end{aligned}
$$

http://www.shodor.org/interactivate/activities/FunctionRevolution

Some examples:

1. Take the region bounded by $y=x^{2}, y=0$ and $x=1$. Revolve this around the x-axis.

What does a typical cross section look like?

$$
\text { What is } \begin{aligned}
\Delta v=\pi r^{2} \Delta x & =\pi y^{2} \Delta x \\
& =\pi\left(x^{2}\right)^{2} \Delta x
\end{aligned}
$$

What is our integral and what is its value?

$$
\left.V=\pi \int_{0}^{1} x^{4} d x=\left(\pi \frac{x^{5}}{5}\right)\right]_{0}^{1}=\frac{\pi}{5}
$$

Some examples:

2. Take the region bounded by $y=x^{2}, y=1$ and the y-axis. Revolve this around the y-axis.

What does a typical cross section look like?

$$
\Delta V=\pi x^{2} \Delta y=\pi y \Delta y
$$

What is $\Delta V=$

$$
\begin{aligned}
& \Delta v= \\
& \begin{array}{rl}
\Delta v & 1 \\
\text { our integral }
\end{array} \int_{0}^{1} d y=\left(\frac{1}{2} y^{2}\right)_{0}^{1} \pi \\
&=\frac{\pi}{2}
\end{aligned}
$$

3. Use our method to find the volume of a sphere of radius R.

What is our region?

What does a typical cross section look like?

$$
V=\pi \int_{-R}^{R} \prod_{2}^{2}-x^{2} d x
$$

$$
V=2 \pi \int_{0}^{R}\left(R^{2}-x^{2}\right) d x
$$

$$
\left.2 \pi\left(R^{2} x-\frac{x^{3}}{3}\right)\right)_{0}^{R}=
$$

$$
2 \pi\left(\left(R^{3}-\frac{R^{3}}{3}\right)-0\right)=\frac{4}{3} \pi \pi^{3}
$$

