HW: Volume Packet Page 4 \#11-25 (odd), 55
Checkin Tuesday on Area Between Curves and Volumes

DO NOW:

Could someone put up answers to the even HW problems.
Let's use our method to find the volume of a cone of height h and radius r.

What is our region?

What does a typical cross section look like?

$$
\begin{aligned}
\Delta V & =\pi y^{2} \Delta x \\
& =\pi\left(\frac{\pi}{h} x\right)^{2} \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& \text { What is } \Delta v=\pi\left(\frac{h}{h} x\right)^{2} \Delta x \\
& \text { What is our integral } V=\pi \int_{0}^{h}\left(\frac{r}{h} x\right)^{2} d x \\
&=\pi \int_{0}^{h} \frac{r^{2}}{h^{2}} x^{2} d x \\
&=\frac{\pi r^{2}}{h^{2}} \int_{0}^{h} x^{2} d x \\
&\left.=\frac{\pi r^{2}}{h^{2}} \frac{1}{3} x^{3}\right]_{0}^{h} \\
&=\frac{\pi r^{2}}{h^{2}} \cdot \frac{1}{3} h^{3} \\
&=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Let's look at problem \#12 part b
$y=2 x^{2}, y=0, x=2$ around x-axis
$\Delta V=\pi y^{2} \Delta x=\pi\left(2 x^{2}\right)^{2} \Delta x$
$V=\pi \int_{0}^{2} 4 x^{4} d x$

Next Question:
How do we deal with regions that are revolved around an axis that is not the boundary of the region?

Look at Volumes of Revolution

Region bounded by: $y=x$, and $y=x^{2}$ revolved around the x - $a x$ is What do our cross-sections look like?

$$
V=\pi \int_{0}^{\text {What is our integral: }} x^{2}-x^{4} d x
$$

We can also revolve around other horizontal and vertical lines

Try \#16 $y=6-2 x-x^{2}, y=x+6$
a) Around the x-axis
b) Around the line $y=3$

Volume Packet, page 5 \#51:
A cone with a base of radius r and height H is cut by a plane parallel to and h units above the base.
Find the volume of the solid (frustrum of a cone) below
the plane.
HINT BELOW:

