HW: Page 411 \#1-7 (all), 9,10, 23 -27 (odd)

DO NOW:

Go over HW, any questions?

$$
\begin{aligned}
& \text { (18) } \int \frac{d x}{x^{2}+a^{2}} \stackrel{?}{=}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C \\
& \begin{aligned}
& \frac{d}{d x}\left(\frac{1}{a} \arctan \left(\frac{x}{a}\right)\right)=\frac{1}{a}, \frac{1}{1+\left(\frac{x}{a}\right)^{2}} \cdot \frac{1}{a} \\
&=\frac{1}{a^{2}\left(1+\frac{x^{2}}{a^{2}}\right)}=\frac{1}{a^{2}+x^{2}} \\
& \text { (11) } \int \frac{(1-x)^{3}}{\sqrt{x}} d x=\int x^{-\frac{1}{2}\left(1+3 x^{2}-3 x-x^{3}\right)} d x \\
& \text { (21) } \int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|+C \\
& \frac{d}{d x}\left(\left.\frac{1}{2} \ln \right\rvert\, \frac{1+x}{1-x}\right)= \\
& \frac{d}{d x}\left(\frac{1}{2}[\ln |1+x|-\ln |1-x|]\right)= \\
& \frac{1}{2}\left(\frac{1}{1+x} \cdot 1-\frac{1}{1-x} \cdot(-1)\right)= \\
& \frac{1}{2}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)= \\
& \frac{1}{2}\left(\frac{1-x+1+x}{1-x^{2}}\right)= \\
& \frac{1}{2}\left(\frac{2}{1-x^{2}}\right)=\frac{1}{1-x^{2}}
\end{aligned}
\end{aligned}
$$

\#22 from the HW

$$
\begin{aligned}
& \frac{d}{d x}\left(x \arcsin x+\sqrt{1-x^{2}}\right) \\
& \frac{1 \cdot \arcsin x}{}+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2 \sqrt{1-x^{2}}} \cdot-2 x \\
& \arcsin x+\frac{x}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Our Next Step in learning how to find antiderivatives: Take the chain rule and run it backwards!

Chain Rule says: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Run it backwards: $\int f^{\prime}(g(x)) \cdot g^{\prime}(x) d x=f(g(x))$
This method is called "u-substitution"
How do we use this?
If we have an integrand that is a product; look to see if one term is a composition and the other term is the derivative of the inner function.

$$
\begin{aligned}
\int 2 x \cos \left(x^{2}\right) d x=\int f^{\prime}(g(x)) \cdot g^{\prime}(x) d x & =f(g(x))+C \\
& =\operatorname{Sin}\left(x^{2}\right)+C
\end{aligned}
$$

Name:
504: BC Calculus (AP)
What do you want in the box so that you can integrate?

1) $\int \cos \left(x^{3}\right) 3 x^{2} d x$
2) $\int \sqrt{\tan x} \sec ^{2} x d x$
3) $\int \sec ^{2} \sqrt{x} \sqrt{\frac{1}{2 \sqrt{x}}} d x$
4) $\int \sin (\cos x)-\sin x d x$
5) $\int \sqrt{\left(e^{5 x}\right)} \sqrt{5 e^{5 x}} d x$
6) $\int \sec ^{2}\left(\tan ^{-1} x\right) \frac{1}{1+x} d x$

Date: \qquad

Why is this method called u-substitution?
We need to define a differential

$$
\begin{aligned}
\Delta U & =\frac{\Delta u}{\Delta x} \cdot \Delta x \frac{d}{d u} \\
d \underline{u} & =\frac{d x}{d x} \underline{d x}
\end{aligned}
$$

In spite of what anyone (including yourself) might tell you, this is NOT fraction cancellation. We make a definition for the differential du that makes it look like fraction rules work.
We will call our inner function u and then rewrite our integral in terms of u.

So in the integral $\int f^{\prime}(g(x)) g^{\prime}(x) d x$
we replace $\mathrm{g}(\mathrm{x})$ with $\underline{\mathrm{u}}$ so $g^{\prime}(x) d x=\frac{d u}{d x} d x$ which is what we just defined as du.
When we're done we need to "translate back" to x.
Redoing the previous problem: $\int 2 x \cos \left(x^{2}\right) d x$

$$
\begin{aligned}
u=x^{2} \quad \frac{d u=2 x d x}{\int 2 x \cos \left(x^{2}\right) d x} & =\int \cos (u) d u \\
& =\sin (u)+C \\
& =\sin \left(x^{2}\right)+C
\end{aligned}
$$

$$
\begin{array}{ll}
\int \sqrt{\operatorname{TAN} X} \sec ^{2} x d x= & \int \sec ^{2} \sqrt{x} \frac{1}{2 \sqrt{x}} d x= \\
\left.\begin{array}{l}
u=\operatorname{TAN} x \\
d u=\sec ^{2} x d x
\end{array}\right] \\
\int \sqrt{u=x^{\frac{1}{2}} d u=\frac{1}{2} x^{-\frac{1}{2}} d x} \\
\int \sqrt{u} d u= & \int \sec ^{2} u d u= \\
\int^{2} u^{1 / 2} d u= & \operatorname{TAN} u+C \\
\frac{2}{3}\left(u^{3 / 2}+C=\right. & \operatorname{TAN} \sqrt{x}+C
\end{array}
$$

Some more examples:
(MAKE SURE TO PUT THESE IN YOUR NOTES

$$
\begin{aligned}
& \int \frac{1}{1+x^{2}} d x=\arctan (x)+C \\
& \int_{\substack{1+x^{2}}}^{\frac{2 x}{1+x^{2}}}=\int \frac{d u}{u}=\int \frac{1}{u} d u=\ln |u|+C \\
& \begin{aligned}
\begin{aligned}
u=1+x^{2}
\end{aligned} \quad \int \frac{d u}{u}=\int \frac{1}{u} d u & =\ln |u|+C \\
d u=2 x d x \quad \int \frac{\ln x}{x} d x=\int u d u & =\ln \left|1+x^{2}\right|+C \\
& =\ln \left(1+x^{2}\right)+C
\end{aligned} \\
& \int \frac{x}{1+x^{4}} d x\left\{\begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x
\end{array}=\frac{u^{2}}{2}+C\right. \\
& u=x^{2} \quad=\frac{1}{2}(\ln x)^{2}+C \\
& \begin{array}{l}
d u=2 x d x \\
\int \frac{x}{1+x^{4}} d x=\int \frac{1}{2} \frac{d u}{1+u^{2}}=\frac{1}{2} \arctan (u)+C
\end{array} \\
& =\frac{1}{2} \arctan \left(x^{2}\right)+C
\end{aligned}
$$

