HW: Note Card is due Tuesday, Dec. 20

Do Now: We will switch with partners to "grade" homework; Below is the solution to the checkin, I'm handing these back

- (a) Since R(6) = 4.438 > 0, the number of mosquitoes is increasing at t = 6.
- (b) R'(6) = -1.913Since R'(6) < 0, the number of mosquitoes is increasing at a decreasing rate at t = 6.
- mosquitoes.
- (d) R(t) = 0 when t = 0, $t = 2.5\pi$, or $t = 7.5\pi$ R(t) > 0 on $0 < t < 2.5\pi$ R(t) < 0 on $2.5\pi < t < 7.5\pi$ R(t) > 0 on $7.5\pi < t < 31$ The absolute maximum number of mosquitoes occurs at $t = 2.5\pi$ or at t = 31.

 $1000 + \int_{0}^{2.5\pi} R(t) dt = 1039.357,$

There are 964 mosquitoes at t = 31, so the maximum number of mosquitoes is 1039, to the nearest whole

2 : absolute maximum value 1: integral 1: answer 4 : { 2 : analysis 1: computes interior critical points 1 : completes analysis

1: shows that R(6) > 0

Solution to Last Night's HW

= 1.017 (or 1.016)

The water temperature is increasing at a rate of approximately 1.017 °F per minute at time t = 12 minutes.

- (b) $\int_{0}^{20} W'(t) dt = W(20) W(0) = 71.0 55.0 = 16$
 - The water has warmed by $16 \,^{\circ}\text{F}$ over the interval from t = 0 to

This approximation is an underestimate, because a left Riemann sum is used and the function W is strictly increasing.

(d) $W(25) = 71.0 + \int_{20}^{25} W'(t) dt$ = 71.0 + 2.043155 = 73.043 $W(25) - W(20) = \begin{cases} 25 \\ 20 \end{cases}$ $W(25) = W(20) + \begin{cases} 25 \\ 20 \end{cases}$

1 : estimate 1: interpretation with units

1: interpretation with units

1 : left Riemann sum 1 : approximation 1: underestimate with reason

71

72

Using the calculator: What's allowed and what's clever

- O Graph a function
- 2 Use solver or intersect to find roots or solutions
- 3 Find the derivative of a function at a pt. (NDERIV)

 4 Find the value of a definite integral

Calculator tricks

- 1) Put the functions in 1,=, 1/2=
- 2) Use alpha-TRACE for 1,1/2 alpha-WINDOW for FAILH

Look at the AP problems you've done. In your groups, generate some entries for this table. We'll put it together as a class.

When you see the words	You should think	
Estimate W'(12) [from a table]	Find a difference quotient with heighboring values	
Amount at a given		-
Accumulation	Sa Rate	
Max, Min of Accomol, Quantity	old When RoleIn=Role (stations Check endpts.	Out)
When is max/min -	-> x value	
What is max/min-	-> yvalue	
Is quantity inc/dec	Is rate pos or neg	
Given Staglidx=f(4)	+ (t)=g(t) _	<u></u>
Inc, Dec, Concavity	Those are like Unit 1.	`
> Value of f(x), fé	Use area to Find Read it from the g	integral ranh
C 21 March Schlassim	$^{tr} pprox$,
Find pts of inflection	n Where deriv change direction	rs