HW: AP Problem tub of water

DO NOW:

Go over HW with your groups. Any questions?

This file (midpt approx graphic.ggb) helps us to understand the midpoint approximation in a different way.

How can we describe this trapezoid that has the same area as the midpoint sum rectangle?
The tangezold is the trapezold whose
upper side is the tangent at the
(c) Alex Shames

Midpt sum rectangle has the same area This as the tangezond.
This can help us decide if we have over or Underestimate.

Here are screen shots of the Geogebra file riemann4.ggb with the function:

1. Which approximation is pictured here? $\left.\right|_{\text {e } f t}$
2. Which sums are below the actual value? $r \mid g \mathrm{gt} \mathrm{midp} t$
3. Which sums are above the actual value? left from the actual value? left, right

Which sums are closer to the actual value?
trap, midpt
4. Explain how you could figure out the answers to 2 and 3 without using the actual calculations, just by looking at the graph

Can you generalize your answers for these two graphs to figure out how you would know the answers to questions 2 and 3 for a function just by looking at the graph. Justify your answer.

What is a Riemann sum?

A more general case of our right, left and midpoint sums.
Any "rectangular" approximating sum is a Riemann sum.
The bases for the rectangles do NOT need to be of equal width. They do need to cover the whole interval without overlapping.

It is okay to find the height of the rectangles by evaluating the function at random points in the intervals.

As the width of the rectangles become smaller, the Riemann sums will approach the definite integral.

We say (and write) that the definite integral is the limit of the Riemann sums. If the intervals have equal width, then the limit is taken as the number of intervals goes to infinity.

GREATESTHITS

For the test you should be able to:

1) Define the definite integral in terms of area and know the integral properties that follow from this.
2) Calculate the exact value of a definite integral using area/geometry, properties of integrals and knowledge of the behavior of functions (i.e. symmetry)
3) Use appropriate notation for writing definite integrals 4) Determine when you can calculate a definite integral (understanding the impact of the continuity of a function) 5) Calculate the average value of a function $\int^{b} f(x) d x$ (understanding the connection to area)
4) Know the Fundamental Theorem of Calculus (FTC) and use it to evaluate definite integrals using the ANTIDERIVATIVE
5) Use the FTC in problems involving graphs of integral defined functions to justify behavior of functions (values extrema, concavity, etc.) $\quad \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$ 8) Use the FTC to solve problems involving rates IN and rates OUT.
6) Find values for approximations: Left, Right, Midpoint
, In special cases we've looked at, determine how good various estimates are in comparison with each other, and decide if they are overestimates or underestimates
7) CAREFUL:
a) Use an estimation sign for all estimates b) When asked to explain the meaning of a Clas Prob very explicit and precise about WHAT, WHEN, and UNITS c) Make sure that you answer all parts of each question
d) Make sure you are using the requested
approximation.

You will have your cal culator I will clear calculators before and after the test.
Answers correct to 3 decimal places,
unless instracted otherwise

Write 4 places to be safe
The Definite Integral

