Another way to interpret the FTC:
If $f(t)$ is a nice function on the interval $[a, b]$ and
If we think of $f^{\prime}(t)$ as a rate of accumulation, then we know from the FTC:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

What does this mean: Integrating a rate over time $t=a$ to $t=b$ gives change in the amount over that time interval



What will this look like on the AP Exam?



The figure above shows the graph of a functiontinuous on the closed interval $-8 \leq t \leq 10$.
The graph has horizontal tangent lines at $x=-4, x=4$, and $x=7$. Let $f(x)=\int_{-2}^{x} g(t) d t$.

1. On what intervals is the function $f(x)$ increasing? Justify your answer.
2. On what intervals is the function $f(x)$ decreasing? Justify your answer.
3. On what intervals is the function $f(x)$ concave upwards? Justify your answer
4. On what intervals is the function $f(x)$ concave downwards? Justify your answer.
5. What are the $x$-coordinates of any local maximum values of $f(x)$. Justify your answer.
6. What are the $x$-coordinates of any local minimum values of $f(x)$. Justify your answer.
7. What are the $x$-coordinates of any points of inflection of $f(x)$. Justify your answer.
8. Consider the interval $-6 \leq t \leq 6$ :
a. What is the average rate of change of $g(t)$ over this interval?
b. Does the Mean Value Theorem guarantee a value of $c$, in this interval, such that $g^{\prime}(t)$ is equal to this average rate of change? Justify your answer?
c. Is there such a value of $c$ ? Explain.
