2. The function f shown below consists of line segments and quarter circles.

(a) $\int_{0}^{6} f(x) d x=$
(b) $\int_{-8}^{0} f(x) d x$
$\int_{-4}^{4} f(x) d x+\int_{-4 \pi}^{6} f(x) d x=\int_{-4}^{0} f(x) d x+\int_{-8}^{-4} f(x) d x$
$4 \pi+8$
3. The function f shown below consists of line segments and quarter circles.

(c) $\int_{12}^{8} f(x) d x=$
(d) $\int_{6}^{10}(f(x)+3) d x=$
$-\int_{8}^{12} f(x) d x=-16$
4. The function f shown below consists of line segments and quarter circles.

(e) Determine all values of k if $\int_{0}^{k} f(x) d x=0$

$$
\begin{aligned}
& k=0 \\
& k=\pi+8
\end{aligned}
$$

Given $\mathrm{y}=3 \sin (\mathrm{x})+4$ on the interval [4,9], what is the smallest possible (reasonable) approximation for the area bounded by the curve and the x-axis? Largest possible approximation?

$$
S<\int_{04}^{9}(3 \sin x+4) d x<35
$$

Given $y=3 \sin (x)+4$ on the interval [4,9], what is the smallest possible (reasonable) approximation for the area bounded by the curve and the x-axis?Largest possible approximation?

$$
5 \leqslant \int_{4 .}^{9} f(x) d x \leqslant 35
$$

$y_{1}=3 \sin (x)+4$
Let's look at how to have the calculator find the area of this region with good precision.
Vars, Y-Vars, Function Math, finturt)

$$
\left.\begin{array}{l}
(4) \frac{(Y 1(X)) d X}{}=\text { fin } \operatorname{Int}(\text { function, variable, } a, b) \\
Y_{1}(x), X, 4,9
\end{array}\right)
$$

Work through this packet with your new group. See if you can figure out how we should define the average value of a function on an interval.

Average Value of a Function

2. a. Now consider the function $y=x$ for $0 \leq x \leq 3$. The y coordinates go quite evenly from 0 to 3 . What is the average of all the y-coordinates? Explain why you think this is so?

. The graph shows the function and a horizontal segment $y=\frac{3}{2}$. Does it seem reasonable that the y-coordinates of he points on $y=x$ above this segment will "balance" the coordinates below the segment?
.Find the area of the region between $y=x$ and the x-axis etween 0 and 3 . How does it compare to the area

Lin Mcumlin
in Mcomulinn
tational Math and science nititative
3. Now consider the function $y=|x|$ for $-2 \leq x \leq 2$.
a. What appears to be the average of the y-coordinates of this function?
b. In the next drawing there is a horizontal segment drawn at
b. In the next drawing there is a horizontal segment drawn at
$y=1$. Doest this segment seem to "balance" the y-coordinates of
the function

c. How do the areas of the regions between the function and the x-axis and between the horizontal segment and the x-axis compare?

4. Next consider $y=2+\sin (x)$ for $0 \leq x \leq 2 \pi$
a. What seems to be the average value of all the y-coordinates? \qquad Draw a horizontal line at this value.

d. Is your answer to c the same as the area under the average value line on this interval?

Lin Mcnulifin

5. (Be careful!) This time the function is $y=|x|$ for $-1 \leq x \leq 6$
a. What appears to be the average value? \qquad
. Draw a horizontal segment at the average value. Does the mount of the graph above and below seem to balance? How about the areas; are they the same?

. If things are not working as before, try using the area between the function and the x-axis to find the average value.

$$
2.643=\frac{\text { Area }}{\text { interva }}
$$

6. Consider the function $y=x+2 \cos (x)$ for $0 \leq x \leq 5$.
b. Draw a horizontal line as before. Does the horizontal line
look like it's in the right place?
7. Consider the function $y=-\frac{1}{4} x^{4}+2 x^{2}-5$ for $-3 \leq x \leq 2$.
a. Use the area of the region between the graph and the x axis to find the average value
b. Draw a horizontal line as above. Does the horizontal lin ook like it's in the right place?

National Math nad Science litiative
(Be carefull) This time the function is $y=|x|$ for $-1<x \leq 6$
What appears to be the average value? \qquad
. Draw a horizontal segment at the average value. Does the mount of the graph above and below seem to balance? How bout the areas; are they the same?

$$
\int_{-1}^{6}|x| d x=18.5
$$

c. If things are not working as before, try using the are
between the function and the x-axis to find the average value

$$
\int_{-1}^{6}|x| d x=18.5=7(\text { avg value on }(-1,6)
$$

Consider the function $y=x+2 \cos (x)$ for $0 \leq x \leq 5$
Use the area idea to find the average value.
b. Draw a horizontal line as before. Does the horizontal line ook like it's in the right place?
7. Consider the function $y=-\frac{1}{4} x^{4}+2 x^{2}-5$ for $-3 \leq x \leq 2$.
. Use the area of the region between the graph and the x xis to find the average value.

Draw a horizontal line as above. Does the horizontal lin book like it's in the right place?

Average Value of a Function

8. Consider the function $y=\cos (x)$ for $-2 \leq x \leq 6$
a. Use the area idea to find the average value.
b. Draw a horizontal line as above. Does the horizontal line look like it's in the right place?

c. Part of the region here has a "negative area." How does that affect finding the average value?

9. Summarize your results with a formula that will give you the average value (average of the y -

coordinates) of afunction $f(x)$ orraninterval $a<x<b$.

Average value $=$

Lin McMullin

