HW: Finish up Open Response AP questions. We will go over the Multiple Choice problems on Wednesday.

The test is on Wednesday, Nov. 30, 2016

Prove: Differentiability Implies Continuity
ie If $f^{\prime}(a)$ exists, then $f(x)$ is continuous at $x=a$.
Where are we starting?

$$
f^{\prime}(a)=\lim _{x \rightarrow 2} \frac{f(x)-f a c}{x-a} \text { exists }
$$

Where are we trying to get fo?

$$
\lim _{x \rightarrow a} f(x)=f(a) \Leftrightarrow \lim _{x \rightarrow a}(f(x)-f(a))=0
$$

Proof: We are given that $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)$ exists
We need to show that $\lim _{x \rightarrow a} f(x)-f(a)=0$
So let's consider: $\lim _{x \rightarrow a} f(x)-f(a)=$

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(x-a)= \\
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)= \\
& f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Greatest Hits

1) Related Rates

Relate, then rate, do the steps Write a sentence for your answer
Implicit differentiation with respect to t.
2) Linearization

Know the process
Do the work carefully
3) Theorems

IVT Know the hypotheses
M VT
Diff \Rightarrow Continuity For MC, read each choice carefully

Format: 5 or 6 Multiple Choice
2 Short Answer
1 Open Response

Suggested Review:

Multiple Choice on Theorems and Related Rates AP Problems on Mean Value Theorem and Related Rates Matching Problems on Related Rates

Using Derivatives

\#3 Examples involving MVT

a) $f(x)$ is differentiable on $[0,7]$
because differentiability implies continuity $f(x)$ is also continuous on $[0,7]$.
We have $f(4)=9$ and $f(6)=9$, by MVT, there's a $c \& \ln (4,6)$ so that $f^{\prime}(c)=\frac{f(6)-f(4)}{6-4}=\frac{0}{2}=0$
b) Similar argument for hypotheses

Use c_{1} from above as well as
C_{2} from $[0,2]$ with MVT.

MVT Free Response Questions
Math 504 - Calculus BC
P EXAM FREE-RESPONSE QUESTIONS - THE MEAN VALUE THEOREM
What do MVT questions look like on the AP Free-Response Questions?
n some questions, the student is explicitly asked to use the Mean Value Theorem.
n others, the use of the MVT is implied.
The conditions of continuity on a specific closed interval and differentiability on the
pen interval must be acknowledged in order for the student to apply the MVT to
stify the MVT conclusion.
read the stem of each question looking for the terms
continuous and differentiable (or twice-differentiable)

2009 SCORING GUIDELINES (Form B)

Question 3

$$
\begin{gathered}
\text { Graph of } f \\
\hline
\end{gathered}
$$

A continuous function f is defined on the closed interval $-4 \leq x \leq 6$. The graph of f consists of a line $0<x<6$, the function is tangent to the x-axis at $x=3$, as shown in the igure above. On the inter $0<x<6$, the function f is twice differentiable, with $f^{\prime \prime}(x)>0$.
Is f differentible at $x=02$ Use the definition of the derivative with one-sided limits to justify your
answer
(b) For how many values of $a,-4 \leq a<6$, is the average rate of change of f on the interval $[a, 6]$

Is there a yalue af reason for your answer.
there a value of $a,-4 \leq a<6$, for which the Mean Value Theorem, applied to the interval $[a, 6]$,
guarantees a value $c, a<c<6$, at which $f^{\prime}(c)=\frac{1}{3}$? Justify your answer.

MVT Free Response Questions
Math 504 - Calculus BC

2008 AP 8 CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

5. Let g be a continuous function with $g(2)=5$. The graph of the piecewise-linear function g^{\prime}, the derivative
of g, is shown above for $-3 \leq x \leq 7$.
(a) Find the x coordinate of all points of inflection of the graph of $y=g(x)$ for $-3<x<7$. Justify your
answer
(b) For the function g on the interval $[-3,7]$, where do you think the global maximum Your answer here will not match the one in the rubric, which includes material we haven't covered yet.
(d) Find the average rate of change of $g^{\prime}(x)$ on the interval $-3 \leq x \leq 7$. Does the Mean Value Theorem applied on the interval $-3 \leq x \leq 7$ guarantee a value of c, for $-3<c<7$, such that $g^{\prime \prime}(c)$ is equal to this
average rate of change? Why or why not?

