HW: Page 245 \#13-28 (all), 29-33 (odd) Checkin Tomorrow Here are three triangles that we will use to help us find

Since our definition of inverses involves the composition, we can use the chain rule to help us see the relationship between the derivatives of a function and its inverse

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=x \\
& (f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=1
\end{aligned}
$$

$g^{\prime}(x)=$

$$
\begin{aligned}
& \text { If } g(a)=\text { b, then } \\
& g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}=\frac{1}{f^{\prime}(b)} \\
& g^{\prime}(X)=\frac{1}{e^{\ln x}}=\frac{1}{X}
\end{aligned}
$$

To find the derivative of $\arcsin x$, start with $\sin (\arcsin x))=x$ (part of our definition of inverse functions) Now, differentiate both sides with respect to x

$$
\begin{aligned}
& \frac{d}{d x}(\sin (\arcsin x)=x) \\
& \cos (\arcsin x) \frac{d(\arcsin x)}{d x}=1 \\
& \frac{d(\arcsin x)}{d x}=\frac{1}{\cos (\arcsin x)}
\end{aligned}
$$

How convenient that we know what $\cos (\arcsin x)$ is!

$$
\frac{d(\arcsin x)}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

A very similar argument would let us show the following:

$$
\frac{d(\arccos x)}{d x}=\frac{-1}{\sqrt{1-x^{2}}}
$$

To find the derivative of $\arctan x$, we will use the rule for

For inverse secant, we will need to be careful about the "SIGN" of one of the terms in the derivative.

$$
\begin{aligned}
& \frac{d\left(\sec ^{-1} x\right)}{d x}=\frac{1}{\sec \left(\sec ^{-1} x\right) \cdot \tan \left(\sec ^{-1} x\right)}=\frac{1}{\operatorname{SEC}\left(\operatorname{SEC}^{-1} X\right) \operatorname{TAN}\left(\operatorname{SEC}^{-1} X\right)} \\
&=\frac{1}{|x| \sqrt{x^{2}-1}}=\frac{1}{|X| \sqrt{X^{2}-1}} \\
& \frac{d(\sec X)}{d X}=\operatorname{SEC} X \operatorname{TAN} X \\
& \tan \left(\operatorname{SEC}^{-1} X\right)= \pm \sqrt{X^{2}-1}
\end{aligned}
$$

Guess and check antiderivatives:

$$
f(x)=\frac{3}{9+x^{2}}
$$

HW: Page 245 \#13-28 (all), 29-33 (odd)

HW: Page 245 \#13-28 (all), 29-33 (odd)

