We started class with a checkin on limits from graphs and continuity.
HW: Page 191\#1-30, 33, 75Don't need to Draw Graphs) DO NOW:
Put question \#'s from previous HW's on board
We will go over \#28 from page 173

$$
x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right)
$$

$$
\left.\begin{array}{rl}
f^{\prime \prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f a}{h} \\
& f^{\prime}(a)
\end{array}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\right)
$$

$$
=\lim _{h \rightarrow 0} 2 a+h
$$

$$
\begin{array}{ll}
f(x)=x^{3} & =\ln _{20} x^{20} \\
=20
\end{array}
$$

$$
\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a}=
$$

$$
\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+x a+a^{2}\right)}{x a}=\lim _{x \rightarrow a} x^{2}+x a+a^{2}=
$$

$$
a^{2}+a^{2}+a^{2}=3 a^{2}
$$

Fee Dalai Lama
Recognizing our shared humanity and our biological nature as
beings whose happiness is dependent on others
open our hearts, and in so doing we gain a sense of purpose and a sense of connection with those around us.

In Chapter 3, we actually find symbolic rules for derivatives, not just talk about what derivatives mean and what they tell us about a function

We start with the POWER RULE:

For any real constant m, if $f(x)=x^{m}$,
then $f^{\prime}(x)=m x^{m-1}$
(we will prove this later for natural number exponents)

$$
f(x)=x^{63.9} \quad f^{\prime \prime}(x)=63.9 x^{62.9}
$$

We have the following rule for combining derivatives:
If $h(x)=(f+g)(x)$ then $h^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
If $j(x)=(k f)(x)$ then $j^{\prime}(x)=k f^{\prime}(x)$ for any constant k

Examples: Find the first and second derivatives of:

$$
p(x)=5 x^{10}-3 x^{4}+\pi x^{2}-2.3 x+\sqrt{73}
$$

$$
P^{\prime}(x)=50 x^{9}-12 x^{3}+2 \pi x-2 \cdot 3
$$

$$
\rightarrow \begin{aligned}
& p^{\prime \prime}(x)=450 x^{8}-36 x^{2}+2 \pi \\
& m(x)=2 x^{10.5}-3 x^{\frac{4}{3}}+x^{-2}
\end{aligned}
$$

$$
m^{\prime}(x)=21 x^{9 \cdot 5}-4 x^{\frac{1}{3}}-2 x^{-3}
$$

$$
m^{\prime \prime}(x)=199.5 x^{8.5}-\frac{4}{3} x^{-2}+6 x^{-4}
$$

```
What are antiderivatives?
    DERIVATIVE JEOPARDY
other function F (the
Given a function \(f\), find another function \(F\) (the
antiderivative of \(f\) ), so that \(F^{\prime}=f\)
Every power function has an antiderivative, given by the
following rule:
    The antiderivative of \(\mathrm{x}^{\mathrm{k}}\) is \(\mathrm{x}^{\mathrm{k}+1} /(\mathrm{k}+1)\) if \(\mathrm{k} \neq-1\)
    The antiderivative of \(x^{-1}\) is \(\ln x(\) for \(x>0)\)
    (we will figure out why this is true later on)
Example: Find the antiderivative of:
\(p(x)=5 x^{10}-3 x^{4}+\pi x^{2}-2.3 x+\sqrt{73}\)
\(P(x)=\frac{5}{11} x^{11}-\frac{3}{5} x^{5}+\frac{\pi}{3} x^{3}-\frac{2.3}{2} x^{2}+\sqrt{73} x+40\)
    HW: Page 191 \#1-30, 33, 75
```

