HW; Page 173 #1 - 5, 9, 10, 23, 24

DO NOW:

28 33 p. 161

Any questions from the HW? Write the problem # on the board. Use all resources available to you to figure out the following:

Squeeze Principle: Suppose that $f(x) \le g(x) \le h(x)$ for all x near x=a.

If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$ then $\lim_{x \to a} g(x) = L$ We will use the Squeeze Principle to prove $\lim_{x \to 0} \frac{\sin x}{x} = 1$ which

is crucial to our proof that the derivative of sin x is cos x

Our proof will use the diagram on the next page. Because sin t/t is an even function, it will suffice to prove this theorem works as t approaches 0 from the right.

October 06, 2016

Write coordinates for C, E, P, Q

In our diagram, we have the following inequality, based on the properties of area:

Area(ΔOCP)≤Area(Sector OEP)≤Area (ΔOEQ)

Since $\cos t \rightarrow 1$ as $t \rightarrow 0$, we get our result by the Squeeze Principle.

October 06, 2016

October 06, 2016

21

Squeeze Principle, lim sinx/x

October 06, 2016

Page 176 #28

Let *f* be a function defined for all real numbers. Which of the following statements *must* be true about *f*? Which *might* be true? Which *must* be false? Justify your answers. (SOMETIMES, ALWAYS, NEVER)

$$\lim_{x \to a} f(x) = f(a)$$
If $\lim_{x \to 0} \frac{f(x)}{x} = 2$ then $f(0)=0$.
If $\lim_{x \to 0} \frac{f(x)}{x} = 1$ then $\lim_{x \to 0} f(x) = 0$
If $\lim_{x \to 1^{-}} f(x) = 1$ and $\lim_{x \to 1^{+}} f(x) = 3$ then $\lim_{x \to 1} f(x) = 2$
If $\lim_{x \to 2} f(x) = 3$ then 3 is in the range of f .
If $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 3$ then $f(0)=3$