HW: Page 173 \#1-5, 9, 10, 23, 24
DO NOW: $\quad 28 \quad 33$ p. 161
Any questions from the HW? Write the problem \# on the board. Use all resources available to you to figure out the following:
$\lim _{x \rightarrow \infty} \sin x=$ DNE, oscillates
$\lim _{x \rightarrow \infty} x \sin x=$ DNE, oscillates wildly
$\lim _{x \rightarrow \infty}|x \sin x|=$ DNE
$\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=D N E \quad$
$\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right) \underset{\sim}{x} 0$

Squeeze Principle: Suppose that $f(x) \leq g(x) \leq h(x)$ for all x near $x=a$.

$$
\text { If } \lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} h(x)=L \quad \text { then } \lim _{x \rightarrow a} g(x)=L
$$

Our proof will use the diagram on the next page. Because $\sin \dagger / \dagger$ is an even function, it will suffice to prove this theorem works as \dagger approaches 0 from the right.

Write coordinates for C, E, P, Q

In our diagram, we have the following inequality, based on the properties of area:
$\operatorname{Area}(\triangle O C P) \leq$ Area(Sector $O E P) \leq$ Area ($\triangle O E Q$)

Since $\cos \dagger \rightarrow 1$ as $\dagger \rightarrow 0$. we get our result by the Squeeze Principle.

We can use a similar argument to look at our old friend

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)
$$

HW: Page 173 \#1-5, 9, 10, 24

We can use a similar argument to look at our old friend

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}-X \leq \lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right) \leq \lim _{x \rightarrow 0^{+}} x \\
& \text { HW: Page } 173 \# 1-5,9,10,24
\end{aligned}
$$

Page 176 \#28

Let f be a function defined for all real numbers. Which of the following statements must be true about f ? Which might be true? Which must be false? Justify your answers
(SOMETIMES, ALWAYS, NEVER)

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=f(a) \\
& \text { If } \quad \lim _{x \rightarrow 0} \frac{f(x)}{x}=2 \text { then } \mathrm{f}(0)=0 . \\
& \text { If } \lim _{x \rightarrow 0} \frac{f(x)}{x}=1 \text { then } \quad \lim _{x \rightarrow 0} f(x)=0 \\
& \text { If } \quad \lim _{x \rightarrow 1^{-}} f(x)=1 \text { and } \lim _{x \rightarrow 1^{+}} f(x)=3 \text { then } \lim _{x \rightarrow 1} f(x)=2 \\
& \text { If } \lim _{x \rightarrow 2} f(x)=3 \text { then } 3 \text { is in the range of } f . \\
& \text { If } \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=3 \text { then } f(0)=3
\end{aligned}
$$

