HW: Page 161 \#30, 31, 33
Page 175 \#16, 20, 22, 28

DO NOW:

1) If you have questions about any of the HW problems, please put the problem number on the board.
2)

$$
\text { Let } f(x)=\left\{\begin{array}{lr}
b x^{2}+1 & \text { if } x<-2 \\
x & \text { if } x \geq-2
\end{array} \quad f\left(-D_{5}\right)=--1\right.
$$

What value of b makes f continuous at $x=-2$?

$$
\begin{aligned}
& f(-2)=-2 \\
& b(-2)^{2}+1=-2 \\
& 4 b=-3 \\
& b=-3 / 4 \text { Happy }
\end{aligned}
$$

3) For $f(x)=\sin (x)$, how do we use the limit definition to find $f^{\prime}(0)$?

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{x \\ \text { look at that limit on our calculator and see what } x=g e t}} \frac{\sin x}{x}
$$

First time through, make sure your calculator is in radian mode

Looks like one.

Then, see what happens when the calculator is in degree mode.
CAVEAT $01745 \approx \frac{\pi}{80}$
Calculator always in radian mode for Calculus!?

First make an educated guess and then use your calculator, to try to figure out what the following limits are (if they exist):
a) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1-x}=0$
b) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=0.5$

My suggestion is to make a table, where the independent variable is set to ask. Try x values like $10^{2}, 10^{3}, 10^{4}, 10^{6}$, etc.

What do we mean when we write
Horrontal asymptote, $y=b$
$\lim _{x \rightarrow \infty} f(x)=b$ means as x increases whthout
bound, then $f(x)$ gets closer to b
$\lim _{x \rightarrow a} f(x)=\infty \quad$ as x approaches a^{n}, then $f(x)$
increases without bound
Vertical asymptote, $x=a$
How are these kinds of limits related to vertical and horizontal asymptotes on the graph of $f(x)$?

There is Algebra with Limits Suppose that $\lim _{x \rightarrow a} f(x)=L \quad$ and $\quad \lim _{x \rightarrow a} g(x)=M$ where L and M are finite numbers (a is not necessarily finite). Let k be any constant. Then the following limits all exist and are given by:

1) $\lim _{x \rightarrow a} k f(x)=K L$
2) $\lim _{x \rightarrow a} f(x) \cdot g(x)=$

3) $\lim _{x \rightarrow a^{-}}[f(x)+g(x)] L+M$
4) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)} \quad \frac{L}{M} \quad M \neq 0$

Because ∞ is not a number, we need to be careful to remember that the rules of arithmetic do NOT apply when we have ∞ We will use shorthand sometimes and behave as if we have a new arithmetic for ∞, but we need to remember that it's not one of our friends that we met back in elementary school.

Some new arithmetic that DOES WORK:
$1 / \infty=0$ is okay to say if we mean it's short for $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$3^{*} \infty=\infty$ is okay. If a quantity increases without bound, then so does three times that quantity.
$\infty+\infty=\infty$ also works. The sum of two quantities that increase without bound also increases without bound.

The following are INCORRECT:

$1 / 0 \rightarrow \infty$ NO! if you're looking at $1 / x$ as \times goes to 0 the hands definitely don't clap; one goes to $+\infty$ and the other to $-\infty$ (this is really hard on your shoulders!)
$\infty-\infty=0$ If you subtract two quantities that increase without bound, you can get any result you like;

$$
\lim _{x \rightarrow \infty}((x+29)-x)=29
$$

$\infty / \infty=1$ If you divide two quantities that increase without bound, you can get any result you like; (where have I heard that before?)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+x}{x^{2}}=3
$$

HW: Page 173 \#16, 20, 22, 23, 26, 28

