HW : Page 161 \# 39-47 (odd)
If the work is worthwhile, then whether we can
complete it or not, it's worth making the attempt. That's why courage is important.
Do Now:
Do problems \#2-27 about the graphs of f and g.
This is based on material you did last year, see what you remember. Front of Room

Windows

lollit
${ }_{4}^{41}$

Page 160-Lunits from Graples.

1. Let $f(x)=\left\{\begin{array}{l}1, \text { if } x \text { sin in integer } \\ 2, \text { if } x \text { is not an intege }\end{array}\right.$
(a) Draw a araph of is not an integer.
(b) Evaluate $\lim _{\text {lim }} f(x)$.
(d) For which values of a does $\lim _{x \rightarrow a} f(x)$ exist? Why?

Lef f be the function whose graph is shown below. Usin
the graph, evaluatio each of the limits in invereerises. $2-15$
explain why the limit does not exist.
[NoIE: $f(1)=2]$

$$
\begin{aligned}
& \text { 2. } \lim _{\substack{ \\
\lim _{x \rightarrow-3} f(x) \\
x \rightarrow-3}} 2 \text { 6. } \lim _{\text {fim }} f(x) \quad \mid
\end{aligned}
$$

Let g be the function whose graph is shown below. Using
the graph evaluate each of the limitis in Exerocises $17-26$ or
explain why the limit does not eists

What are our two limit definitions of the derivative?

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

Use the graph of f and g, and the definition of the derivative (as appropriate) to evaluate each limit. If the limit does not exist, explain why.
51. $\lim _{x \rightarrow 0} \frac{f(x)-2}{x-0}=f^{\prime}(0)=0$
52. $\lim _{x \rightarrow 3} \frac{f(x)}{x-3}=f^{\prime}(3)=-1$
$\lim _{x \rightarrow 1} \frac{f(x)}{x+2}=\frac{0}{3}=0$ NOT DERIVATIVE

54. $\lim _{h \rightarrow 0} \frac{g(-2+h)-3 / 2}{h}=g^{\prime}(-2)=\frac{1}{2}$

Graph of g
55. $\lim _{h \rightarrow 0^{-}} \frac{g(-1+h)-2}{h}=\mid$ eft- side deriv. 22^{y}
56. $\lim _{h \rightarrow 0} \frac{g(2+h)}{h}=g^{\prime}(2)^{\frac{1}{2}}$, $\begin{aligned} \text { does } \\ \text { not } \\ \text { exist }\end{aligned}$

What is our intuitive definition of limits? What do we mean when we write

For x values closer
to a, then the y-values are clossto L

CONTINUITY

What is our definition of continuity?
We say $f(x)$ is continuous at $x=a$ if

1) $\lim f(x)$ exist $x \rightarrow a$
2) f(a) exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

So there are three ways a function can be discontinuous. (Generate an example for each one.)

1) $f(a)$ is not defined

2) the limit as $x \rightarrow a$ of $f(x)$ does not exist
3) the limit as $x \rightarrow a$ of $f(x)$ exists but does not equal $f(a)$

Example:

Let $f(x)=\left\{\begin{array}{lr}b x^{2}+1 & \text { if } x<-2 \\ x & \text { if } x \geq-2\end{array}\right.$

What value of b makes f continuous at $x=-2$?

