October 04, 2016

HW : Page 161 # 39 - 47 (odd)

If the work is worthwhile, then whether we can complete it or not, it's worth making the attempt. That's why courage is important.

Do Now:

Do problems #2 - 27 about the graphs of f and g. This is based on material you did last year, see what you remember. Front of Room Windows

Kolaczyk Carolyn	Jauniskis Zoe	Gunning Maren	Bastepe Isinsu	Chan Winnie	Waitz Ava	
Chin Alex	Gavish Ilai	Reilly Harrison	Bennett Max	Razis Costa	Zhang Nick	Gilman Gershon
Gavish Einat	Gilman Nosh	Kahhale Tamara	Cohen Sophie	Lailler Julia	Shen Sophie	
Grossman Gabby	Perlo Devin	Scott Nick	Klein Nathaniel	Liao Iris	Reilly Liana	

October 04, 2016

October 04, 2016

4

What are our two limit definitions of the derivative?

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$f'(a) = \lim_{X \to a} \frac{f(x) - f(a)}{X - a}$$

p. 161 #51-56

Use the graph of f and g, and the definition of the derivative (as appropriate) to evaluate each limit. If the limit does not exist, explain why.

What is our intuitive definition of limits? What do we mean when we write

October 04, 2016

October 04, 2016

CONTINUITY

What is our definition of continuity?

We say f(x) is continuous at x=a if

3)
$$\lim_{X \to a} f(x) = f(a)$$

October 04, 2016

Example:

Let
$$f(x) = \begin{cases} bx^2 + 1 \text{ if } x < -2\\ x & \text{ if } x \ge -2 \end{cases}$$

What value of *b* makes *f* continuous at x = -2?