Recognizing a limit as a derivative

Look at the expression below:

$$
\lim _{x \rightarrow 1} \frac{e^{x}-e}{x-1}
$$

Can you recognize this as a derivative?
What is $f(x) ? e^{X}$

What is a ?

504: AP Calculus BC
2.5: Definition of the Derivative

Name \qquad

1) What does the following represent for $g(x)$?

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(X)
$$

2) Given $f(x)=x^{3}$, what does the following limit represent?

$$
\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}=f^{\prime}(2)
$$

$$
f(x)=x^{2}
$$

3) If $y=x^{2}$, what does the following limit represent for the function?

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h}=6=f^{\prime}(3)
$$

4) The following limit represents the derivative for a particular function at a particular value of x. What is $f(x)$? What is the value of a ?

$$
\begin{aligned}
& a=\frac{\pi}{7} \\
& f(x)=3 \lim x
\end{aligned}
$$

5) What does this limit represent?

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)
$$

3) If $y=x^{2}$ what does the following limit present for the function? The slope

$$
\begin{aligned}
& \text { 3) If } y=x^{2} \text { what does the following limit epresent for the function? } \\
& \text { 4) The following limit represents the derivative for a particular function at a particular value of } x \text {. }
\end{aligned}
$$

4) The following limit represents the derivative for a particular function at a particular value of x.

$$
\frac{d(d y / d x)}{d x}=f^{\prime \prime}(x)
$$

5) What does this limit represent?

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=y^{\prime}
$$

GREATEST HITS for UNIT 1b

Students will be able to:

- everything from before . . AND...
- know how to use properties of the first and second derivative of a function, f, to identify characteristics of f
- use the first derivative test to classify local extreme values and JUSTIFY with appropriate structure of language and use of notation
- Use the derivative to write equations of tangent lines
and Points of Infrection
- justify the concavity of a function given information about the first and second derivatives of the function
- use the second derivative test to classify local extrema and JUSTIFY with appropriate structure of language and use of notation
- Finding |Justifying Absolute Max |Min an a - use the properties of the derivative to closed intewal. distinguish between the graphs of f, f^{\prime} and f" (think "curve sketching")
- use limits to connect average rate of change to instantaneous rate of change/derivative (the limit definition of the derivative and its various forms)

Graph of f^{\prime}
4. Let f be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one line segment and a semicircle, as shown above.
(a) On what intervals, if any, is f increasing? Justify your answer.
(b) Find the x-coordinate of each point of inflection of the graph of f on the open interval $-3<x<4$. Justify your answer
(c) Find an equation for the line tangent to the graph of f at the point $(0,3)$

