[^0]
More definitions:

$f(x)$ is concave up on an interval / if f ' is
\qquad on I.
holds water
$f(x)$ is concave down on an interval / if f '
is

inflection point - point at which the direction of concavity changes (which is when direction of f^{\prime} changes
\qquad
\qquad)

HIGHER DERIVATIVES

If $f(x)$ is a function, then its derivative $f^{\prime}(x)$ is a function. So, we can take the derivative of $f^{\prime}(x)$ and get the second derivative of $f(x)$, which we notate as $f^{\prime \prime}(x)$. The derivative of $f^{\prime \prime}(x)$ is written $f^{\prime \prime}$ ' (x). After that, we switch to the notation $f^{(4)}(x)$ for higher derivatives.
What does the second derivative of a function tell us about the function?
and its graph
Remember what we said the derivative tells us about $f(x)$ If $f^{\prime}(x)>0$ on an interval then $f^{\prime}(x)$ is increasing on interval
If $f^{\prime}(x)<0$ on an interval then $f^{\prime}(x)$ is decreasing on intervd
We also defined concavity:
If $f^{\prime}(x)$ is increasing on an interval, then f is concave up on the interval.
If $f^{\prime}(x)$ is decreasing on an interval, then f is concave down on the interval.

Putting these two together for f " (x) we get:
If $f^{\prime \prime}(x)>0$ on an interval, then $f(x)$ is concave up on interval
If $f^{\prime \prime}(x)<0$ on an interval, then $f(x)$ is concave down on interval.

We can also use the second derivative to decide \bigcup whether a stationary point is a local max or local min. If a function is concave up at a stationary point, then the point is local min If a function is concave down at a stationary point, then the point is local max

This gives us the second derivative test:
Suppose that $f^{\prime}(a)=0$. There are three possibilities:
If $f^{\prime \prime}(a)>0$, then $f(x)$ has a local min at $x=a$.
If $f^{\prime \prime}(a)<0$, then $f(x)$ has a local max at $x=a$.
If $f^{\prime \prime}(a)=0$, then NO CONCLUSION CAN BE DRAWN.

Log into the Chromebook, and go to my website, ghitelman.pbworks.com and follow the link on the assignment page to Marc Renault's Calculus Applets

Do \#10, 20, 12, 14, 15

[^0]: HW: Page 135 \#1, 4 , 6, 20, Justifications Worksheet
 Checkin on Friday, Sept. 30, 2016
 Unit 1bTest: Friday, Sept. 30, 2016

 DO NOW: Problem \#26, page 129

 The graph of the derivative of a
 function f is shown to the right.
 Use the graph of f^{\prime} to answer
 the following questions about f.
 [NOTE: The graph of f is not shown.]
 a) On what intervals is $\left[\begin{array}{l}3,6\end{array}\right]$ increasing $[0,3] \quad\left[6,8\right.$ Whenever $x_{1}<x_{2}$ then
 b) Where does f have a stationary point?

 $$
 \begin{aligned}
 & x=3,6 \quad f^{\prime}(x)=0 \text { at those points } \\
 & \text { ere does } f \text { have a local maximum? Local minimum? }
 \end{aligned}
 $$

 $x=3$ is local min, because $f^{\prime}(x)$ goes hey to pos. $x=6$ local max d) On which intervals is f concave up? Concave down? $f^{\prime}(x)$ goes pos to When $f^{\prime}(x)$ is increasing [0 0,1$]$ [$[2,4,5][7,8]$ down $f^{\prime}(x)$ de, $f^{\prime}(x)$ goes pos to when $f^{\prime}(x)$ changes direction $x=1,4.5,9[1,2][4.5,7]$
 f) Where does fachieve its maximum value on/the interval $[0,2]$? Its minimum
 value? $f^{\prime}(x)<0$ on $[0,2]$ se $f(x)$ dec on $[0,2]$, so $f(0)$ ismaxvalul
 g) Where does f achieve its maximum value on the interval [3,6]? Its minimums $m!n \mathrm{Valhe}$
 value? $f^{\prime}(x)>0$ on $[3,6]$ so $f(x)$ inc on $[3,6]$ max value is $f(6)$
 h) Assume that $f(0)=0$. Sketch a graph of f. (Your graph need only have the right min value is general shape.)
 i) How does your answer to part h) change if $f(0)=5$?

