HW: From today's graphing packet:
\#1, 4, 7,20 (note that 20 is going the other direction)

DO NOW: Checkin on interpreting the graph of the derivative
(we will look at the next slide before you do the checkin)

How to write justifications
f \qquad on
(some description about f ...is increasing, is decreasing,
has a local max , has a point of inflection, etc...)
the interval/at the point when \qquad
(specific domain reference...x values.. write as an interval or at a specific value, $x=b$))
since
$\overline{\text { (write something about CALCULUS that explains why this is true) }}$
at those/that values/value.

2. Refer to Exercise 40 of Exercises 3.4. Zeros of f are

$$
\text { abscissa }=x \text {-value }
$$

$$
\text { ordinate }=y \text {-value }
$$

Find stationary pts,

because there was an infinite discontinuity in f^{\prime}, there is a cusp in f (abrupt change in slope from +infinity to -infinity)

Because there is no change in concavity, there is no inflection point in this graph of f.

