Agenda (Day 5): The Racetrack Principle

 (Speed Limit Law)SWBAT use the derivative to predict bounds for the value of a function on a given interval given a point and restrictions for the rate of change of the function on the interval.
HW: Page 107 \#21, 23, 29 (part (c) is a challenge), 32

1) Homework Check and Q / A (5-10 min)
2) Racetrack (quick video) and then in your groups sketch a graph to represent parts I and IV. (5-7 min)
3) A few examples using the Racetrack Principle (10-15 min)
4) Review Card Expectations
http://www.youtube.com/watch?v=1rnhEK_z6TY
a) In your groups sketch a graph to represent parts I and IV.
b) What distinguishes the two?

http://www.youtube.com/watch?v=1rnhEK_z6TY

RACETRACK PRINICIPLE

PART I: Fast dogs win.
(INFORMAL) If dogs f and g start together and dog g always runs faster than $\operatorname{dog} f$, then $\operatorname{dog} g$ always leads and therefore wins the race.
(FORMAL) Let f and g be functions defined for all x in $[a, b]$, and suppose that $f(a)=g(a)$. If $f^{\prime}(x) \leq g^{\prime}(x)$ for all \boldsymbol{X} in $[a, b]$, then $f(x) \leq g(x)$ for all \boldsymbol{x} in $[a, b]$.

To use when we want to look at a point after the place where the two functions intersect (larger x value)

How can we use this to prove properties of functions?
Example: (\#22, page 107)
Suppose that $f(1)=3$ and $f^{\prime}(x) \geq 2$ for all x in $[0,5]$. Show that $f(4) \geq 9$

Pick a

slower dog $g(x)$, where $g^{\prime}(x)=2$ fo
$f^{\prime}(x) \geqslant g^{\prime}(x)$ $f(1)=g(1)=3$

PART IV: Photo finish
(INFORMAL) If dogs f and g finish together, then the faster dog cannot have been ahead at any time.

PART IV: Photo finish

Let \boldsymbol{f} and \boldsymbol{g} be functions defined for all \boldsymbol{x} in $[a, b]$, and suppose that $f^{\prime}(x) \leq g^{\prime}(x)$ for all \boldsymbol{x} in $[a, b]$ and $f(b)=s(b)$. Then $f(x)>s(x)$ for all x in

21. Suppose that $f(1)=-2$ and $f^{\prime}(x) \leq 3$ for all x in
(a) Show that $f(2) \leq 1$. $[1,2] \quad$ Pant 1 (after pt. of
(b) Show that $f(5) \leq 10$. intersection)
(c) Show that $f(0) \geq-5$.
(d) Is $f(9)<31$ P Justify your answer.
(e) Is $f(-5)>-23$? Justify your answer.
(f) Could $f(4)=8$? Justify your answer.
(g) Could $f(-7)=-25$? Justify your answer.
(h) Could $f(8)=-25$? Justify your answer.
(i) Let $g(x)=4 x+3$. Compare the numbers $f(7)$ and $g(7)$.

Example: (\#22, page 107)
Suppose that $f(1)=3$ and $f^{\prime}(x) \geq 2$ for all x in $[0,5]$. Show that $f(0) \leq 1$. Note: Same conditions as previous problem, so our slow dog is the same
Pick $g(x)$ so that $g^{\prime}(x)=2$

$$
g(1)=3
$$

For finding abound on $f(0)$, we ie

(a) Let $g^{\prime}=3$ and $g(1)=f(1)=-2$

$$
\text { and } g(x)=3(x-1)-2
$$

Since $f^{\prime} \leq g^{\prime}$ or $[1,2]$
and $g(1)=f(1)=-2$
then

$$
f^{\prime}(x) \geqslant g^{\prime}(x) \quad g(x)=2(x-1)+3
$$

$$
\begin{aligned}
& n(2) \leqslant g(2 \\
& f(2) \leq 1
\end{aligned}
$$

Let $g^{\prime}=3$ and $g(1)=f(1)=-2$

$$
\text { and } y(x)=3(x-1)-2
$$

Since $f^{\prime} \leq g^{\prime}$ on $[0,1]$
and $g(1)=f(1)=-2$

$$
f(0) \geq g(0)=-5
$$

$$
f(0) \geq-5
$$

Q

part g of \#21

