Day 4 Agenda: From Local Linearity to the Speed Limit Law

SWBAT to identify a difference quotient in the context of a problem
SWBAT to use values of the derivative to estimate the value of the function in a context

SWBAT estimate the derivate and assign appropriate units given a table of values.
HW:Worksheet for Day 4 AND p. 116 \#7, 19, 21, 23-26
0) Do Now: Caren's Bicycle (parts a and c) - (5-7min)

Return Tell the Story Checkin

1) Homework Q / A (7 min)
2) Letourneau Vacation Car Ride Part abb: what questions can we answer? Sketch the Graph. (T-P-S) (5 min in small groups)
3) Letourneau Vacation Car Ride Part C: interpretations and estimations (10 minutes in small groups)
4) Rules and Expectations...The Review Card

Caren rides her bicycle along a straight road from home to school, starting at home at time $t=0$ minutes and arriving at school at time $t=12$ minutes. During the time interval $0 \leq t \leq 12$ minutes, her velocity $v(t)$, in miles per minute, is modeled by the piecewise-linear function whose graph is sh wn above.
(a) Find the acceleration of Caren's bicycle at time $t=7.5$ minutes. Indicate units of measure $(8,0.2)$ $a(t)=v^{\prime}(t)=\operatorname{slopeofsegnent}$ from $(7,0.5)$ and $(8,02)$

$$
a(7.5)=v^{\prime}(7.5)=0 \cdot \frac{-1}{1} \frac{\mathrm{mil} \mathrm{~m} / \mathrm{n}}{\mathrm{~mm}}=\mathrm{mi} / \mathrm{min}^{2}
$$

(c) Shortly after leaving home, Caren realizes she left her calculus homework at home, and she returns to get it . At what time does she turn around to go back home? Give a reason for your answer.
At $t=2$, velocity changs from positive tonegative, indicates a change in direction.
(d) Larry also rides his bicycle along a straight road from home to school in 12 minutes. His velocity is modeled by the function w given by $w(t)=\frac{\pi}{15} \sin \left(\frac{\pi}{12} t\right)$, where $w(t)$ is in miles per minute for $0 \leq t \leq 12$ minutes. Who lives closer to school: Caren or Larry? Show the work that leads to your answer.

Consider the following scenario:

2 cars are traveling on the Massachusetts Turnpike traveling West. They pass through the EZPass high speed checkpoint at the same time, both going 60 mph . Car A turns on the cruise control for the next 30 min . without interruptions or traffic slow downs (I know, wishful thinking...). The cruise control for Car B is broken, but the driver is careful to never exceed 60 mph for the next 30 min . under the same driving conditions as $\operatorname{Car} \mathrm{A}$.
a) What Questions can we answer.. what kinds of things could we do/model? (Think-Pair-Share)

- we can draw graphs of velocity
- we can draw graphs of position
- we know that Car A is never behind
- we know Car B could be behind and never ahead of Car A
- we can find the exact distance travelled by Car A
larget possible value
- We can find a bound for the distance travelled by Car B

On the same set of axes, sketch a possible graph of two functions representing the position of Car A and Car B.

Mrs. Letourneau was in Car B while her husband was driving. She can't help but think like a Calculus Teacher, even when she's on a road trip, so she recorded the car's position relative to the EZPass checkpoint. Here is the data she collected:

i. Mrs. Letourneau performs the following calculation: What quantity does this calculation represent in the context of this problem (use appropriate units)?

$$
\frac{D(15)-D(10)}{15-10}
$$

The average velocity of the carnbetween 10 and 15 minutes

Mrs. Letourneau was in Car B while her husband was driving. She can't help but think like a Calculus Teacher, even when she's on a road trip, so she recorded the car's position relative to the EZPass checkpoint. Here is the data she collected:

t (minutes)	0	10	15	22	30
D (miles)	0	9.8	14.6	21.1	29.0

ii. What is the bestestimate for the velocity of Car B at time $t=12$ given the data provided? Represent this value using appropriate function notation.
?

$$
\begin{aligned}
V(t)=D^{\prime}(t) & \approx 0.96 \mathrm{miles} / \mathrm{min}(\text { West }) \\
& \approx \\
V(t)=D^{\prime}(t) & \approx \frac{D(15)-D(10)}{15-10}=0.96 \mathrm{mi} / \mathrm{min}
\end{aligned}
$$

Mrs. Letourneau was in Car B while her husband was driving. She can't help but think like a Calculus Teacher, even when she's on a road trip, so she recorded the car's position relative to the EZPass checkpoint. Here is the data she collected:

t (minutes)	0	10	15	22	30
D (miles)	0	9.8	14.6	21.1	29.0

iii. At the 30 min . mark, Little Letourneau asks, "Are we there yet?" to which Mrs. Letourneau responds, "If Dad continues at the same rate he has been going for the last 8 minutes, we will be there in 10 more minutes." What is the mile marker at the Letourneau's final destination?

$$
\begin{aligned}
& 38.5 \text { miles } \\
& \text { Point-slope form } \quad \begin{aligned}
y & =m\left(x-x_{1}\right)+y_{1} \\
y & =.95(x-30)+29.0 \\
& \text { Tanaentat } 30 \mathrm{mins} \\
y & =.95(+10-30)+29.0 \\
& =38.5 \text { miles }
\end{aligned}
\end{aligned}
$$

