Agenda (Day 1): The Idea of the Derivative (as a rate function)
Objective: SWBAT begin to develop the idea of the derivative as a rate function.
SWBAT interpret function notation and use it to correctly justify the meaning of a statement in a real-world context.

1) Do Now: Start to look at the graphs on the handout...Spend 3-5 min, studying the graph, making/writing observations and discussing with your group.
2) Notes: Our first description/informal definition of the derivative (10 min)
3) Class discussion: The key points in interpreting the graph(10 min)...
4) Handout \#1-5 in groups and then discuss (5 + 5 min)
5) Quick Exit Ticket...on phone?

Homework: Tell the story (to be collected as a check-in) Google Information Survey, Review Course Expectations

Day 1: Position, Velocity, Acceleration

$P(t)=$ the car's position at time t, measured in miles east of the State Capitol on ramp
$\mathrm{V}(\mathrm{t})=$ the car's eastward velocity at time t , measured in miles per hour

```
OUR TASK: Tell the
```

What does it mean for $P(t)>0$? for $P(t)<0$?
The car is eastof on ramp Car is west of on ramp
What does it mean for $V(t)>0$? $V(t)<0$? $V(t)=0$?
Thecar is moving east, Car is moving west, Nerthe r east hor wise What does it mean for $\mathrm{P}(\mathrm{t})$ to change from positive to negative? The car is switching from being east of
on ramp to west of the on ramp What does it mean for $V(t)$ to change from positive to negative? The Caris changing direction from east to What does it mean for $P(t)$ to have a maximum? a minimum? Farthest east of on ramp
What does it mean for $V(t)$ to haye a maximum? a minimum?

Fastest speed east
Fastest speed west

BIG QUESTION OF CALCULUS

What is the derivative?

First Definition: Let f be any function; the new function f^{\prime}, called the derivative (or rate function) of f is defined by:
instantaneous rate of change of f
For $P(t)$ [or $s(t)]$, the derivative is $V(t)$ or $s^{\prime}(t)=v(t)=P^{\prime}(t)$
Remember, velocity (and position) are vector quantities. They have both
 What are the units for these quantities? ?

$\mathrm{v}(\mathrm{t})=\mathrm{miles} / \mathrm{min} . . . \mathrm{a}(\mathrm{t})=\mathrm{miles} / \mathrm{min} / \mathrm{min}$

Rate can be the change of many different real world variables: snowfall, sand accumulating on a beach, oil flowing from a tank.

What are the key points in interpreting our position and velocity graphs?

(b) Velocity vs. time

Let's tell the story...
(This is your homework . . .)

Use these questions as a way to help you analyze and interpret the meaning of function notation in the context of our car trip. Use correct units.

1) What does the statement $P(2)=100$ mean?

At 2 hours, the car is 100 miles east of the on ramp
2) What does the statement $P(7)<0$ mean?

The car is west of the on ramp at 7 hours.
3) What does the statement $V(2)=70$ mean?

At 2 hours, the car is traveling at 70 mph east.
4) What does the statement $V(6.5)=-60$ mean?
5) What does the statement $V(t)=P^{\prime}(t)$ say about the relationship between the functions P and V ?

The velocity is the instantaneous rote of change of
position.

